

World-beating
sensitivity

CHEMILUMINESCENCE ANALYZER

Ultraweak luminescence detector systems

東北電子産業株式会社

Tohoku Electronic Industrial Co., Ltd.

Capturing light for the Sake of the Environment

There is light that human eyes cannot see, Yet our tools can detect it with accuracy.
By detecting early-stage of oxidation, We create high-quality and safe production.
We are committed to building a sustainable society,
And our efforts in quality assurance are our priority.
Choose us for a better tomorrow, With safe and reliable products to follow..

CHMILUMINESCENCE ANALYZER

CLA-FS5

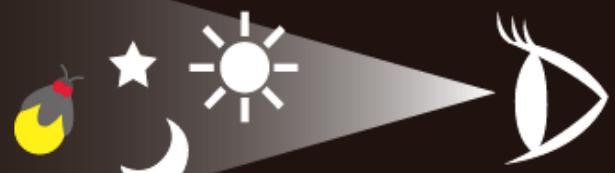
PMT (photomultiplier tube) Type
For highly sensitive CL detection
such as about 50 photons/cm²

CLA-IMG4

CCD camera Type
For highly sensitive CL IMAGE
detection

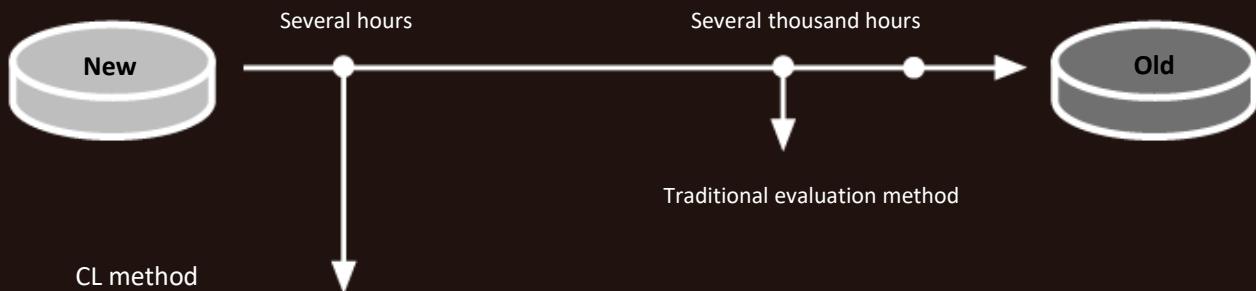
CLA-SP3

CCD camera+ Spectrometer Type
For Highly sensitive luminescent
SPECTRUM detection


What is “Chemiluminescence Analyzer” ?

Capture oxidative degradation with the world highest sensitivity and contributes to reducing environmental impact

- Oxidizing material emit ultra-weak luminescence.

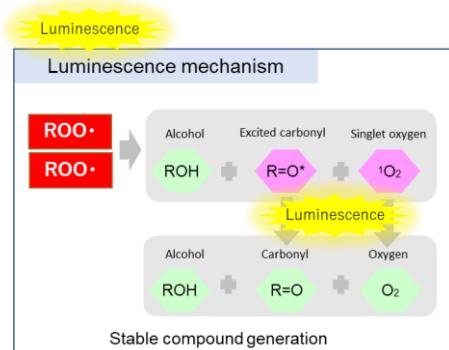
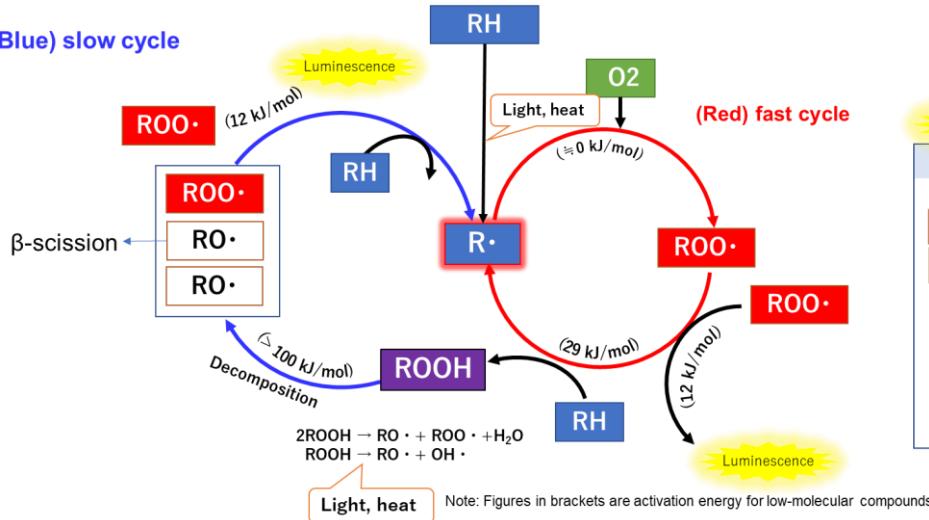

Ultra-Weak Luminescence
(Food, oil, plastics, biomaterials)

Detectable range by human eyes

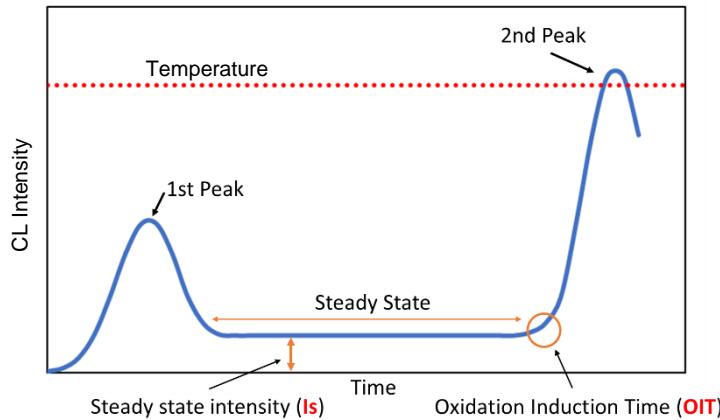
Chemiluminescence Analyzer do not require reagents and can capture ultra-weak luminescence, e.g., about 1/1000 of firefly light

- Detect earlier and more accurately

1. Evaluating and promoting use of recycled materials, leading to reduction of environmental impact.
2. Support R & D of high stable materials and contribute to reduce “Marine Plastic”.
3. Evaluate the effects of additives
4. Improve highly sensitive quality control
5. Support the supply chain risk management

東北電子産業株式会社

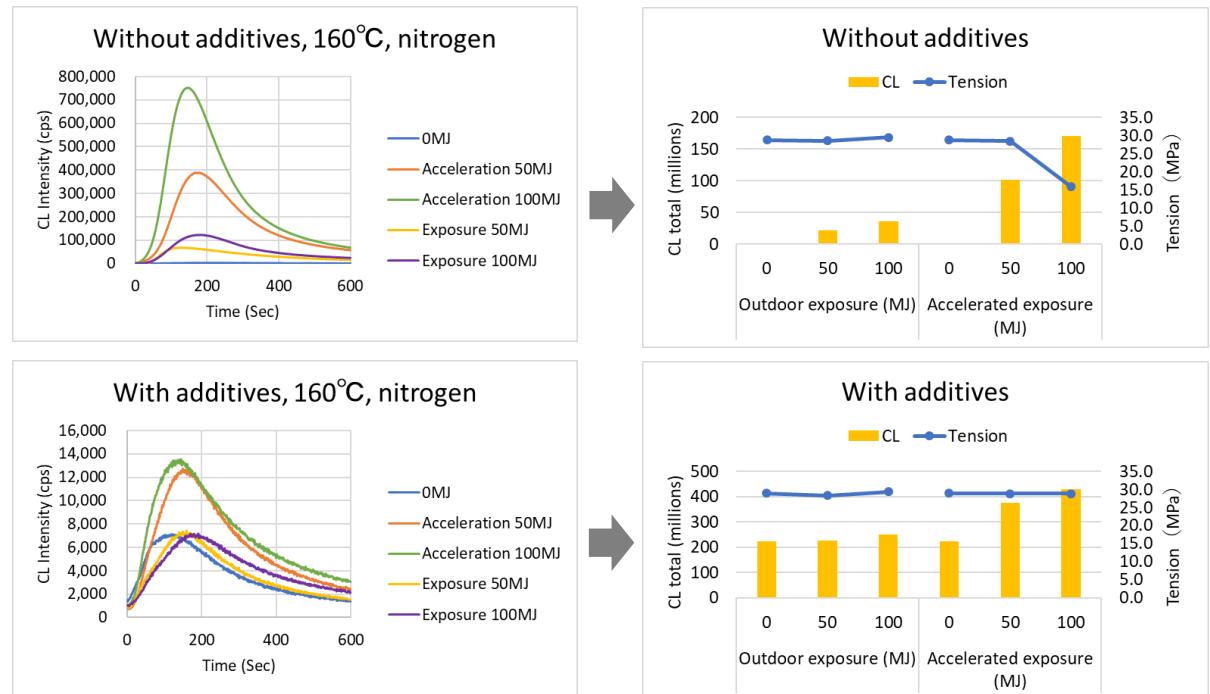

TEI is an innovative company developing new instruments under the motto "opening up the future of photonics and electronics". We believe that precision instruments are essential for manufacturing quality products.

Auto-oxidation mechanism and luminescence phenomena

(Blue) slow cycle

Data analysis method during heating measurement

The graph on the left shows typical CL behaviour during heating measurement. As the sample is heated, the peroxide decomposes, and CL from the excited carbonyl increases, resulting in a peak (the first peak). This corresponds to the amount of peroxide at that point. The oxidation reaction is then accelerated by heating in air or oxygen, and eventually the CL reaches a steady state. The intensity at this time is termed the steady-state luminescence intensity (**Is**). In the sample to which stabiliser has been added, the stabiliser is consumed, the steady state of the oxidation reaction is disrupted, and the amount of radicals in the sample increases, resulting in the appearance of significantly higher luminescence (the second peak). This point is called the oxidation induction time (**OIT**). The OIT can be used to evaluate the oxidative stability of the sample. Also, since **Is** is the steady state of radical extinction and formation within the sample, it represents the rate of radical generation, and this value can also be used to evaluate the oxidative stability of the sample.

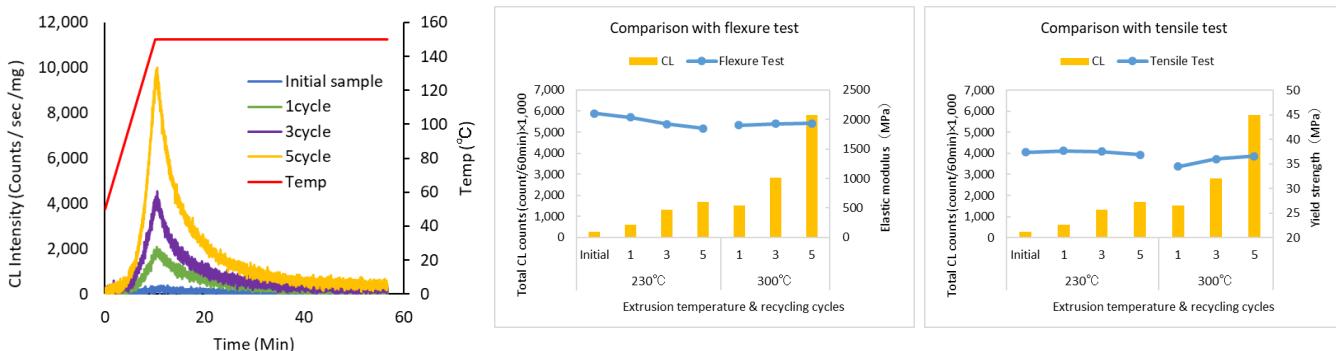

Overview of CL Analyzer

CLA-FS (PMT Type)	CLA-IMG (CCD Type)	CLA-SP (CCD Type)	Example of sample
<p>Diagram of CLA-FS (PMT Type) showing a sample chamber with a heating control, cooling water circulator, electronic cooling, and a photomultiplier tube (PMT) with 15 pairs of rotating optical filters.</p>	<p>Diagram of CLA-IMG (CCD Type) showing a sample chamber with a heating control, cooling water circulator, electronic cooling, and an EM-CCD Camera.</p>	<p>Diagram of CLA-SP (CCD Type) showing a sample chamber with a heating control, cooling water circulator, electronic cooling, and a CCD with a diffraction grating.</p>	<p>Solid, liquid, or powder can be measured with following cell. $\Phi 50\text{mm} \times 10\text{mm}$ $\Phi 20\text{mm} \times 2\text{mm}$</p>

Measurement Examples (Polymers)

● Weather resistance evaluation

Samples	Polypropylene subjected to exposure testing and acceleration testing, with and without additives (HALS, UVA)
Exposure conditions	50MJ (approximately 2 months), 100MJ (approximately 4 months), JIS K 7219, exposure tests performed in Osaka
Acceleration conditions	50MJ (equivalent to 177 hours), 100MJ (equivalent to 353 hours), JIS K 7350-4, Sunshine Weather Meter
Measurement conditions	160°C, nitrogen, CLA-FS4

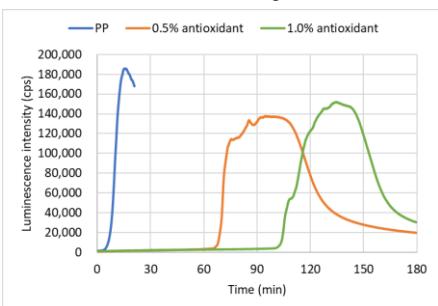

The "with additives" exposure-tested samples showed only a slight difference, but the acceleration-tested samples showed an increase in the amount of luminescence as they degraded, indicating a small difference in oxidative degradation at the very beginning.

In the tensile test, a difference in the value was first seen in the "without additives" acceleration-tested sample oxidised at 100MJ.

● Evaluation of recycled materials

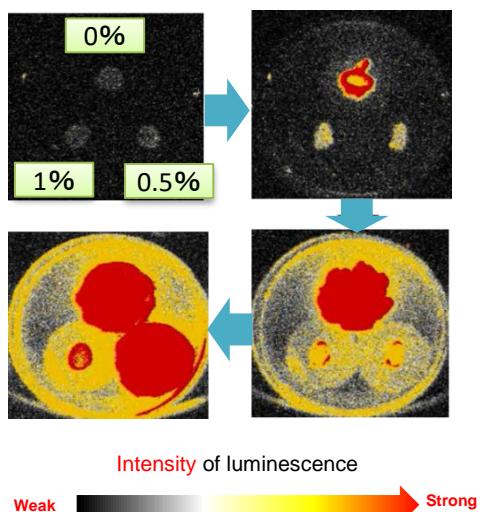
Samples were supplied by the Japan Chemical Innovation and Inspection Institute (JCII), along with acceleration test, exposure test and physical property test support.

Samples	Polypropylene (PP) pellets manufactured at different extrusion temperatures and cycle counts
Extrusion conditions	Temperatures: 230°C, 300°C; cycle counts: 0, 1, 3, 5
Measurement conditions	150°C, nitrogen, CLA-FS4

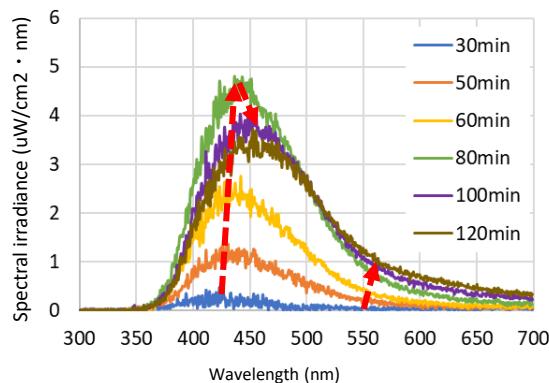

The higher the recycling cycle count, the higher the amount of luminescence shown; slight oxidation due to recycling could be detected. In the physical property tests (the flexure test and tensile test), hardly any difference was observed.

Measurement Examples (Polymers)

● Evaluation of oxidation induction time (OIT)


Samples	Polypropylene (PP) pellets with different concentrations of additive (Irganox 1010)
Measurement conditions	CLA-FS4: 200°C, oxygen; CLA-IMG: 200°C, oxygen

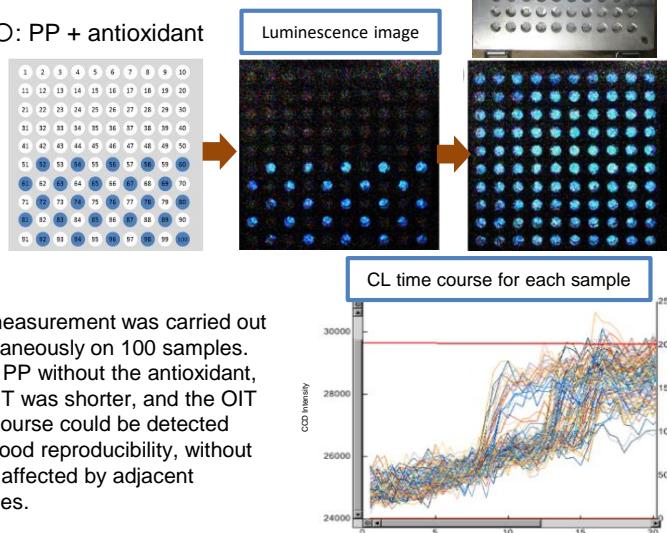
OIT data measured using CLA-FS4


Luminescence image measurement

OIT image measured using CLA-IMG

● Luminescence spectrum during thermal oxidation

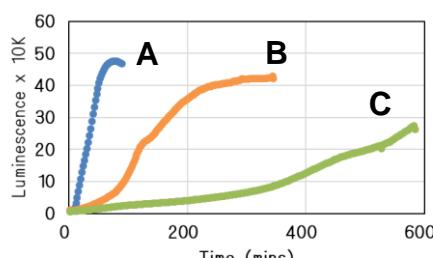
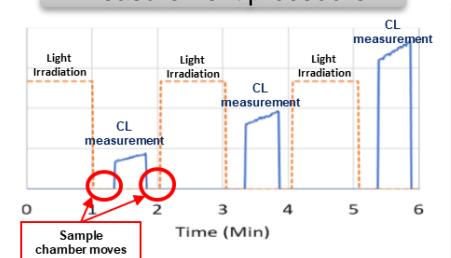
Samples	Polypropylene (PP) pellets
Measurement conditions	200°C, oxygen, CLA-SP3

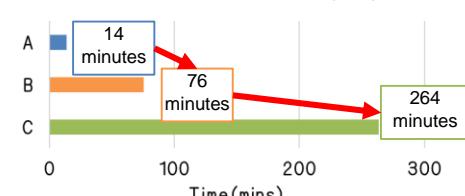


With oxidation, a long wavelength shift was observed in the peak position in the 400nm range, and an increase in intensity was observed in the long wavelength region of 550nm and above.

● Simultaneous measurement of 100 samples

Samples	Polypropylene (PP) pellets
Measurement conditions	200°C, oxygen, CLA-100

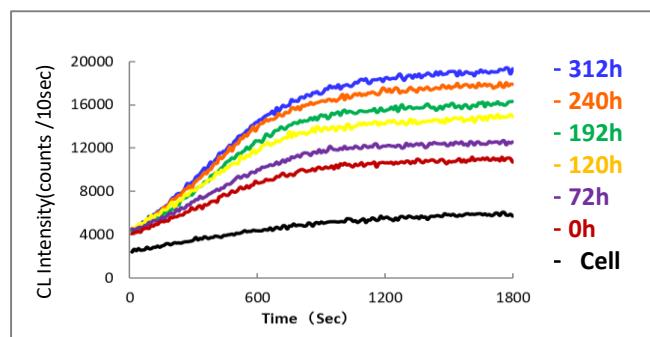
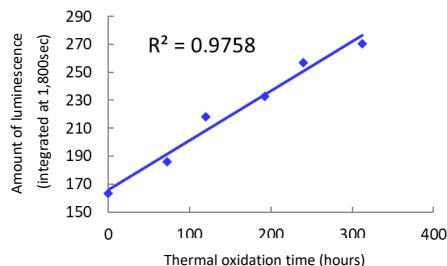


●: PP; O: PP + antioxidant


OIT measurement was carried out simultaneously on 100 samples. In the PP without the antioxidant, the OIT was shorter, and the OIT time course could be detected with good reproducibility, without being affected by adjacent samples.

● Evaluating the Light resistance of three different types of PP

Measurement procedure

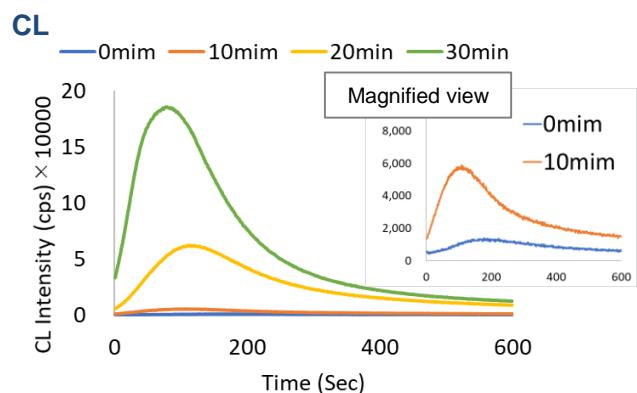
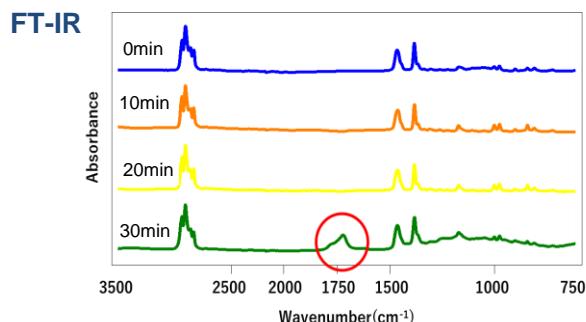
Oxidation induction time (OIT)



This shows the OIT results for PP samples under light irradiation (using a xenon lamp) while CL measurements were taken alternately.

Sample C was found to have the longest OIT and the best light resistance. Evaluation is possible in a few days of measurement.

Measurement Examples (Polymers)

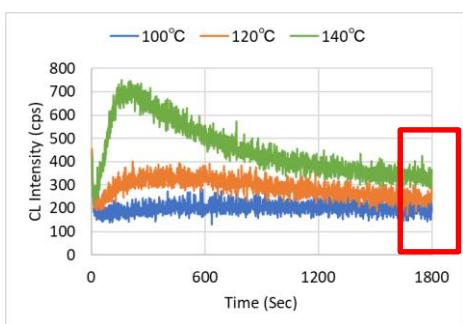
● Evaluation of thermal oxidation of rubber



Samples	Natural rubber with carbon black
Heat processing	100°C, 72 to 312 hours
Measurement conditions	160°C, oxygen, CLA-FS3

The longer the thermal oxidation time, the higher the amount of luminescence (see graph above); the integrated amount of luminescence at 1,800sec showed a high positive correlation with the thermal oxidation time (see graph on left).

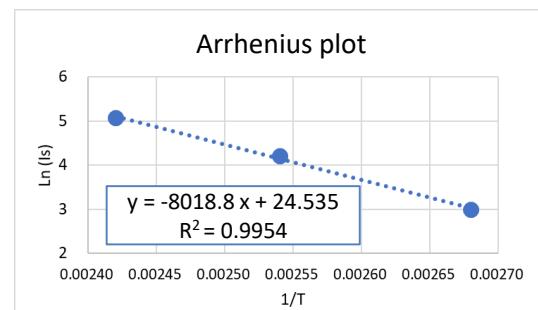
● Comparison with infrared (IR) absorption measurement

Samples	Polypropylene powder
Degradation conditions	Heating at 160°C for 10 to 30 minutes
Measurement conditions	160°C, nitrogen, CLA-FS4



With the infrared absorption measurement method, a peak derived from the carbonyl group was visible in the sample after 30 minutes of heating (see graph on left), but with the CL method, an increase in luminescence was observed after 10 minutes of heating.

Samples supplied by: Sumitomo Chemical Co., Ltd.

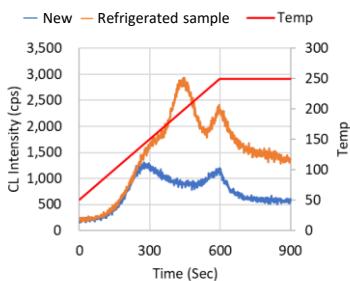

● Calculation of activation energy

Samples	Polypropylene (PP) pellets
Measurement conditions	100°C, 120°C, 160°C, oxygen, CLA-FS4

	100°C	120°C	140°C
1/T	0.0026	0.0025	0.0024
Is	191.62	239.12	331.73
Ln (Is)	3.00	4.21	5.08

1. Oxidation of the samples was accelerated under oxygen flow at each temperature condition, and the average value was calculated for the value (Is) where luminescence stabilized after the first peak.
2. Ea (activation energy) was determined from the slope of the equation of the approximation curve, with LN (Is) plotted as the vertical axis, and 1/T (absolute temperature) as the horizontal axis.

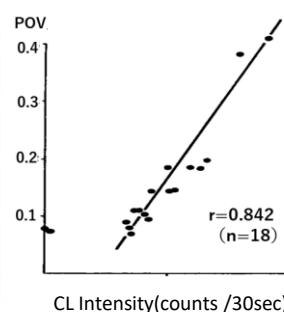
$$\text{Slope } (-8018.8) \times \text{gas constant} = 66.7 \text{ kJ/mol}$$


Ea can be calculated by measuring CL under multiple temperature conditions.

Samples supplied by: Sumitomo Chemical Co., Ltd.

Measurement Examples (Food)

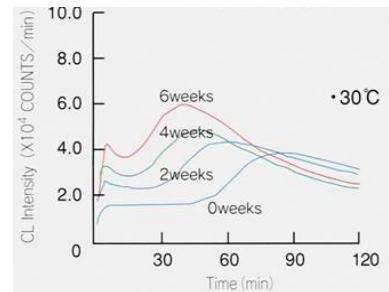
● Measurement of rapeseed oil (1)


Samples	Rapeseed oil New, refrigerated for 2 years
Measurement conditions	50 to 250°C, nitrogen, CLA-FS4

The amount of luminescence was higher in the sample refrigerated for 2 years than in the new sample, and multiple luminescent components were observed by means of temperature-elevation measurement.

● Measurement of rapeseed oil (2)

Samples	5g rapeseed oil
Measurement conditions	150°C, nitrogen, CLA-ID

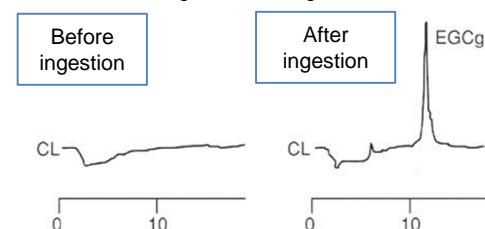


The CL integrated value and the POV value showed a high correlation.

R. Ushuki, Nippon Shokuhin Kogyo Gakkaishi 32 (1), 74 (1985)

● Luminescence of beer

Samples	1.2ml beer
Degradation conditions	Stored at 30°C for up to 6 weeks
Measurement conditions	60°C, CLA-ID

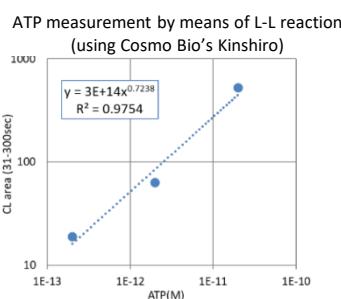

The longer the storage period, the more the CL increased.

H. Kaneda et.al., Journal of Food Science, 55 (5), 1361-1364, 1990

● Measurement of catechins in human blood

Samples	Catechin extract in plasma
Mobile phase	Methanol-water (2:8, v/v, containing 0.1% phosphoric acid), 1.0ml/min
Reagents	① 8.0M acetaldehyde in 50mM phosphate buffer at pH 7.4, containing HRP 108mg/L, 3.0ml/min ② 8.8M H2O2, 1.0ml/min
Measurement conditions	CLA-FL, HPLC system

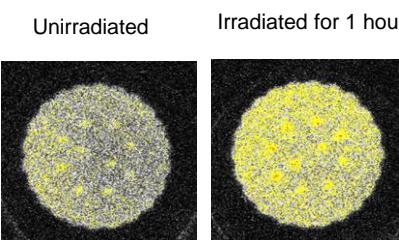
Detection of EGCg luminescence in human plasma, before and after ingestion of EGCg



Nakagawa, K. and Miyazawa, T.: Analytical Biochemistry, 248, 41-49, 1997

Luminescence peaks of epigallocatechin gallate (EGCg) were detected in plasma 60 minutes after ingesting an EGCg capsule.

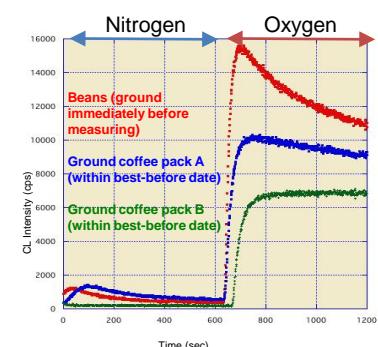
● Measurement of ATP


Samples	ATP reagent manufactured by Cosmo Bio
Measurement conditions	Room temperature, air, CLA-IDsp

Luminescence up to about $1 \times 10^{-13} M$ showed good linearity, with a correlation coefficient of 0.97.

● Luminescence of cookies

Samples	Cookies (deep-fried confectionery)
Degradation conditions	254nm, irradiation for 0 to 1 hour
Measurement conditions	100°C, nitrogen, CLA-ID

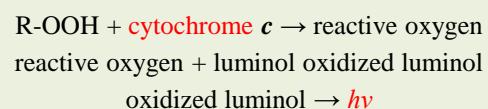
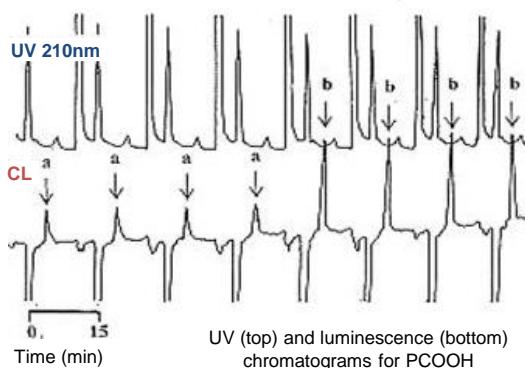
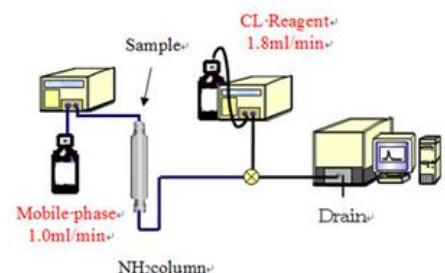


The amount of luminescence increased after 1 hour of light irradiation.

Samples supplied by: Kochi Prefecture Paper Technology Center

● Measurement of Coffee

Samples	Columbian medium-roasted beans
Measurement conditions	80°C nitrogen → oxygen, CLA-FS4

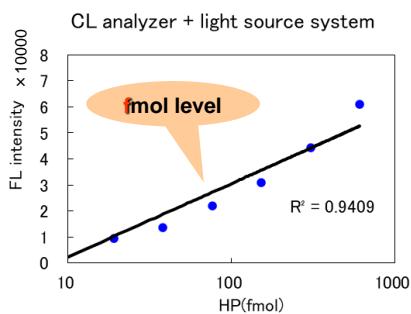
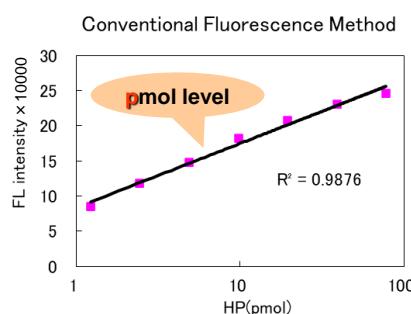



Immediately after grinding, the amount of luminescence was higher and the fragrance and flavour were also better. The amount of luminescence decreased with storage time.

Samples supplied by: La Coet

Measurement Examples (Biochemical)

● Measurement of phospholipid hydroperoxides (PCOOH) in blood

Samples	Catechin extract in plasma
Mobile phase	2-propanol-methanol-water (135:45:20, v/v/v)
Reagents	10mg of cytochrome c and 2mg of luminol dissolved in 1L of 50mM borate buffer solution
Sample	Photo-oxide of L- α -phosphatidylcholine, β -oleoyl- γ -palmitoyl (C18:1, [cis]-9/C16:0, SIGMA)
Measurement conditions	CLA-FL HPLC system (column: SIL-NH2)

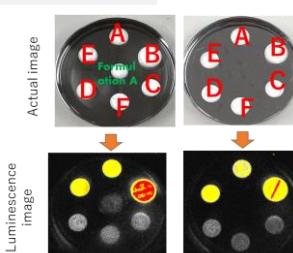


CL-HPLC chromatograms were obtained for normal subjects a and b. The amount of PCOOH for subject a (several hundred femtomoles) was less than for subject b (several picomoles), and could be detected with good reproducibility. Lipid peroxides in human blood are an indicator of oxidative stress in the body.

Guidance provided by: Professor Teruo Miyazawa, Tohoku University Graduate School of Agriculture

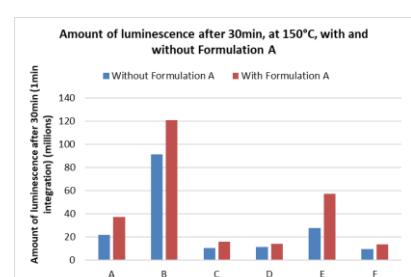
● Measurement of tablets

● Ultra-sensitive fluorescence measurement

Samples	Haematoporphyrin
Measurement conditions	LD 405nm + HP 600nm Room temperature, air, CLA-FS4

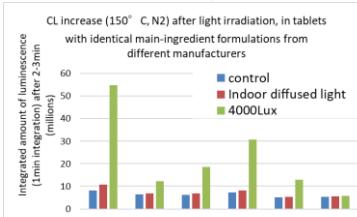

In contrast to the method using a general fluorescence spectrophotometer, this method enabled a calibration curve to be obtained to about 20fmol.

Samples

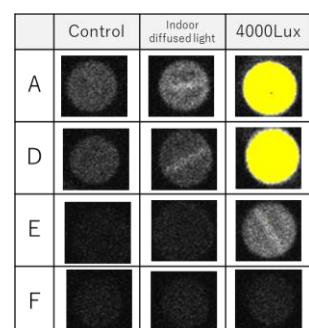

Degradation conditions	Experiment 1: All new tablets Experiment 2: photodegraded tablets (1 week under indoor diffused light, 2 weeks under 4000Lux)
Measurement conditions	Experiment 1: 150°C, oxygen, exposure for 1 min, sensitivity: 255, CLA-IMG Experiment 2: 150°C, nitrogen, exposure for 1 min, sensitivity: 255, CLA-IMG

With and without a formulation of different constituents (Formulation A) placed in the middle

Experiment 1



Experiment 2



The amount of luminescence was higher, and oxidation was more prone to occur, when Formulation A was present.

Effect of photodegradation

Although the tablets had the same main constituents, a difference was seen in the rate of increase.

Specifications

Product name	CLA-FS5	CLA-ID5
Photograph		
Detection method	Single photon counting method using a photomultiplier tube	
Detection wavelength	300nm to 650nm (centre wavelength: 420nm)	
Cooling method	Primary cooling: Peltier element; Secondary cooling: water cooling	
Measurement items	① Luminescence intensity (counts per second) ② Luminescence spectrum (380nm to 660nm/20nm resolution)	Luminescence intensity (counts per second)
Minimum measurement time (Gate time)	0.1 sec, 1 sec, 10 sec	
Spectral filters	15, built-in (380nm to 660nm: every 20nm)	None
Touch panel display items	① Amount of luminescence, ② Sample chamber temperature, ③ Sample chamber temperature setting, ④ Status, ⑤ Gate time, ⑥ Alarm, ⑦ Detail, ⑧ Sample chamber status (open/closed), ⑨ Shutter status (open/closed)	
Communication functionality	1 USB port (used by dedicated software)	
Dimensions, weight	523.5mm (W) x 411.5mm (D) x 547mm (H) Approx. 60kg	310mm (W) x 420mm (D) x 524mm (H) Approx. 35kg

Product, model	CLS-ST5 (Heating Type)	CLS-SH2 (Non-isothermal Type)	CLS-MX5 (Mixing Type)	CLS-FL2 (Flow Type)
Maximum sample size	50mm diameter x 10mm (H)	20mm diameter x 5mm (H)	50mm diameter x 10mm (H)	Flow tube bore: 0.5mm
Heating temperature	Room temperature to 220°C	Room temperature to 350°C	Room temperature to 100°C	Room temperature to 50°C
Functionality included	Atmosphere replacement	Non-isothermal functionality Atmosphere replacement	Atmosphere replacement Sample agitation Reagent injection	2 injection ports 1 drainage port
Dimensions, weight	 W221 × D357 × H121mm 約4kg	 W221 × D357 × H121mm 約4kg	 W221 × D357 × H121mm 約4kg	 W221 × D357 × H121mm 約2kg

●Accreditations and awards

2006: Certified by the Ministry of Economy, Trade and Industry (METI) of the Government of Japan as one of Japan's 300 Most Vibrant Monozukuri (Manufacturing) Small and Medium Enterprises (SME)

2009: Received the MIYAGI SUGURE MONO ("Miyagi outstanding product") Award

2012: Received the Monozukuri Japan Award, Tohoku Economic and Industrial Award

2014: Received the First Technology Advancement Award conferred by the Japan Society of Polymer Processing

2017: Certified by METI as a Company Driving Regional Growth

2019: Certified by the Kawasaki Monozukuri Brand Promotion Council as a Kawasaki Monozukuri Brand

2022: Received the FUKEN-MIYAGI Grand prize Award

2023: Received the SME Excellent New Technology/New Product Award

Specifications

Product name	CLA-IMG4	CLA-SP3
Photograph		
Detection method	Back-illuminated frame-transfer CCD camera	
Detection wavelength	400 to 800nm (centre wavelength: 600nm)	
Cooling method	Air cooling	
Number of effective pixels	1024 x 1024	1600 x 200
Resolution	Vacuum resolution: approx. 150µm x 150µm (Option: approx. 10µm)	Wavelength resolution: 1nm
Measurement items	Luminescence image Luminescence intensity (within image selection range)	Luminescence spectrum measurement
Exposure time	30ms to 120min	0.01 to 10,000sec
Lens	25mm, F0.95 (C mount)	Incidence slit width: 0.1/0.5/1.0mm
Built-in shutter	Built-in mechanical shutter	None
Communication functionality	IEEE1394b	USB
Dimensions, weight	310mm (W) x 446mm (D) x 775mm (H) Approx. 30kg	310mm (W) x 420mm (D) x 524mm (H) Approx. 35kg

Product, model	CLS-LA1 (Laser-induced Fluorescence Type)	Product, model	CLO-LIS (Light irradiation option)
Maximum sample size	50mm diameter x 10mm (H)	Function	Evaluation of oxidation stability against heat & light.
Heating temperature	Room temperature to 100°C	Maximum sample size	50mm diameter x 10mm (H)
Laser light-source wavelength	375nm or 405nm	Heating temperature	Room temperature to 220°C
Laser output and stability	0.1 to 20mW At 5 to 20mW: ±1% At 0.1 to 5mW: ±5%	Equipment configuration	①Driver ②Controller ③Software ④Light Source(UV ramp 254nm/365nm)
Dimensions, weight	 W221 x D357 x H121mm 約4kg	Photograph	 Selectable (halogen, xenon, metal halide, UV, LED, etc.)

Standard

- JIS K 7351 ("Sensitive measurement method of peroxide in plastics by detecting ultra-weak photon emission")
- ISO 4765:2022 ("Chemically-induced ultra-weak photon emission (UPE) measurement as an analysis method of degradation of polymeric material")

<http://www.tei-c.com>

Tohoku Electronic Industrial Co., Ltd.

Head Office: 2-14-1 Mukaiyama, Taihaku-ku, Sendai, Miyagi 982-0481, Japan

Rifu Office: 6-6-6 Shirakashi-dai, Rifu-cho, Miyagi 981-0134, Japan

Tokyo Office: 203, Lapole-Shinmaruko, 2-897 Shinmaruko Higashi, Nakahara-ku, Kawasaki 211-0004, Japan

Kyoto Lab.: 4F-B, Kohei Bldg., 717 Uematsu-cho, Kawaramachi-dori Matsubara-sagaru, Shimogyo-ku, Kyoto, Kyoto 600-8028, Japan

Note : "Chemiluminescence Analyzer" is a trademark of Tohoku Electronic Industrial Co., Ltd

Note : Please be aware that the information given in this document is subject to change without notice, for the purposes of improvement et cetera.

Note : Unauthorized reproduction of the content of this document in whole or in part is forbidden.